厌氧反应器的生产流程及构造:
反应器由反应区、沉淀区和气室三部分组成。废水由反应器底部进入,以一定流速自下往上流动,与污泥接触,有机质被吸附分解,产生大量沼气。沼气经由反应器上部三相分离器的集气室排出,同时,含有悬浮污泥的废水进入三相分离器的沉淀区,污泥经三相分离器沉降面返回反应器主体部分,含有少量较轻污泥床技术应用于工业废水处理领域。进水经过布水器输入反应器,与下降管循环来的污泥和出水均匀混和后,进入反应分离区内的流化床反应室,在那里,大部分COD被降解为沼气,在这个分离区产生的沼气由低位三相分离器收集和分离,并产生气体提升,气体被提升的同时,带动水和污泥作向上运动,经过一级“上升”管达到位于反应器顶部的气体/液体分离器,在这里沼气从水和污泥中分离,离开整个反应器。水和污泥混和经过同心的“下降”管直接滑落到反应器底部形成内部循环流,从首级分离区的出水在第二阶段低负荷后处理区内被深度处理,在那里剩余的可生物降解的COD被去除,在上层分离区产生的沼气被顶部的三相分离器收集,并沿二级“上升管”,输送到顶部旋流式气体/液体分离器,实现沼气分离和收集。同时,厌氧出水经过出水堰离开反应器自流进入后续处理中。
�或粉尘,既要分离效率高,阻力小,不易阻塞,还要安装面积小,运行经济,安全可靠,操作方便。
管束除雾器用来分离烟气所携带的液滴。在吸收塔内, 经过研究,我们可以发现,在弯曲通道内气液两相流场的分布和流动状态非常复杂,其压降受气流速度、叶片转折角、液滴与气流间相互作用的影响。由上下二级管束除雾器(水平式或菱形)及冲洗水系统(包括管道、阀门和喷嘴等)组成。经过净化处理后的烟气,在流经两级卧式管束除雾器后,其所携带的浆液微滴被除去。从烟气中分离出来的小液滴慢慢凝聚成较大的液滴,管束除雾器技术规范然后沿管束除雾器叶片往下滑落至浆液池。在一级管束除雾器的上、下部及二级管束除雾器的下部,各有一组带喷嘴的集箱。集箱内的管束除雾器清洗水经喷嘴依次冲洗管束除雾器中沉积的固体颗粒。经洗涤和净化后的烟气流出吸收塔,终通过烟气换热器和净烟道排入烟囱。
膨胀颗粒污泥床(简称EGSB)反应器是厌氧流化床与UASB反应器两种技术的成功结合,EGSB反应器的工作区威流态化的初期,即膨胀阶段(容积膨胀率约为10-30%)。在此条件下,进水流速较高,一方面可保证进水基质与污泥颗粒的充分接触和融合,加速生化反应进城,另一方面有利于减轻或消除静态床(如UASB)中常见的底部负荷过重的状况,增加反应器对有机负荷物特别是对毒性物质的承受能力。
EGSB反应器采用处理水回流技术,对于常温和低负荷有机废水,回流可增加反应器的水力负荷,保证处理效果。对于超高浓度或含有毒物质的废水,回流可以稀释进入反应器内的基质浓度和有毒物质浓度,降低其对微生物的抑制和毒害,这是EGSB区别于UASB反应器为突出的特点。
EGSB是在UASB反应器的结构相似,所不同的是在EGSB反应器中采用相当高的上流速度,因此,在EGSB反应器中颗粒污泥处于完全或部分“膨胀化”的状态,即污泥床的体积由于颗粒之间的平均距离的增加而扩大。为了提高上升速度,EGSB反应器采用较大的高度与直径比和很大的回流比。在高速上升速度和产气的搅拌作用下,废水与颗粒污泥间的接触更充分,因此可允许废水在反应器中有很短的水力停留时间,从而EGSB可以高速地处理浓度较低的有机废水。膨胀颗粒污泥床(EGSB)反应器是在UASB反应器的基础上发展起来的第三代厌氧生物反应器,与UASB反应器相比,它们大的区别在于反应器内液体上升流速的不同。在UASB反应器中,水力上升流速一般小于1m/h,污泥床更象一个静止床,而EGSB反应器通过采用出水循环,其水力上升流速一般可达5~10m/h,所以
反应器具有很大的高径比,可高达20米或更高。因此对于相同容积的反应器而言,EGSB反应器的占地面积大为减少;
颗粒污泥的膨胀床改善了废水中有机物与微生物之间的接触,强化了传质效果;
高容积负荷可达30kgCOD/m3•d;
布水均匀,三相分离器的工作状态和条件稳定。
以上信息由专业从事pp混合沉淀池厂家的江澜环保于2025/4/29 18:30:44发布
转载请注明来源:http://jinan.mf1288.com/jinanxinxing-2858769542.html